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The secondary instability of salt fingers
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The primary instability of salt fingers in an unbounded fluid with uniform vertical
salinity/temperature (S̄∗

z/T̄
∗
z) gradients consists of a vertically (z) uniform ‘elevator’

mode, amplifying exponentially in time. We compute the z-wavelength (h0) of the fast-
est growing secondary instability by integrating a system of linear partial differential
equations (PDEs) with time-dependent and horizontally periodic coefficients. It is
suggested that this instability limits the amplitude of the primary mode and h0S̄

∗
z deter-

mines the value of the statistically steady r.m.s. salinity fluctuation (S ′). Comparisons
of h0 with 〈(S ′)2〉1/2/S̄∗

z are made using direct numerical simulations (DNS), and our
theory for the vertical salt/heat flux is also given and compared with the DNS.

1. Introduction
It is well known that laminar depth (z) independent salt fingers can be temporally

amplified in an unbounded thermocline with uniform temperature gradient T̄ ∗
z and

salinity gradient S̄∗
z (as conventional, the assumed constant expansion coefficients are

absorbed in T/S). Although the fastest growing disturbance, the so-called ‘elevator’
mode, satisfies the full nonlinear Boussinesq equations, it is unstable to disturbances
which vary with z (Holyer 1984). In the two-dimensional case, this secondary instability
has the form of a horizontal shear flow, such that the subsequent nonlinear evolution
might cause adjacent fingers to merge, thereby limiting the finger amplitude and
leading to the ultimate statistically steady state. Shen (1995) verified this by direct
numerical simulations (DNS) of the Boussinesq equations, and another numerical
example is presented in figure 1. Stern, Radko & Simeonov (2001) have also obtained
results similar to figure 1, along with evaluations of the heat and salt flux which were
in good agreement with ocean observations (St Laurent & Schmitt 1999). A simple
explanation of the statistically steady results, and its extension to three dimensions,
is the purpose of this paper.

Our discussion of the secondary instability in the present heat–salt case begins
with Holyer’s (1984) linear instability calculation that, however, is limited in several
respects. She assumes a basic finger state (elevator mode) with zero growth rate,
rather than the one with maximum growth rate. This restriction fixes the horizontal
wavelength and permits an arbitrary amplitude for the vertical velocity W0(x) of
the fingers. The amplification of z-dependent perturbations is then obtained using
Floquet theory. However, the amplitude W0(x) of the elevator mode is not ‘given’, but
is strongly dependent on (and limited by) the amplitude of the secondary instability.
This implies that the temporal evolution of the elevator and secondary modes must
be considered simultaneously, as done herein. A second limitation of Holyer’s theory
that follows from the zero-growth-rate assumption is its restriction to a single very
large density ratio R ≡ T̄ ∗

z/S̄
∗
z = KT /KS , where KT is the heat diffusivity, KS is the
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Figure 1. The finite-amplitude development of instability of initially straight fingers with small
initial vertical velocity W = 2 (see text). The disturbance isohalines illustrate the developing
instability at (a) t = 8.5, (b) 9.0, (c) 10, and the final chaotic finger convection at (d) t = 89.5. To
obtain this, (2.1)–(2.3) are solved for R = 2, Pr = 7, τ =1/24 using the pseudo-spectral method
with fourth-order Runge–Kutta time integration scheme and a time step �t = 0.01. In addition
to the z-independent fingers, the initial condition contained random T/S noise with amplitude
=0.02. The horizontal domain size is 2 fastest growing finger wavelengths and the vertical size
is 5 times larger; the number of grid nodes is denoted on the axis.

salt diffusivity, and ν (used subsequently) is the molecular viscosity. This R � 102 is
much greater than the typical ocean value R � 2.0. In this paper, we shall compute
the fastest growing z-wavelength (h0) for different R.

In § 3.2, we consider an arbitrary R > 1 with the elevator mode having known
values of the fastest growing wavelength (FGW) and growth rate. It is shown that
this mode generates a ‘super-exponential’ growth of perturbations varying sinusoidally
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with z, as determined by a system of linear partial differential equations (PDEs), with
non-constant coefficients in time (t) and in the horizontal (x). For two-dimensional
fingers with two-dimensional perturbations, the growth of the latter (as t → ∞) is
obtained for various vertical wavelengths, and the one [h0(R)] that grows fastest is
determined. The same kind of calculation is made for three-dimensional fingers (§ 3.3)
with three-dimensional perturbations by solving linear PDEs in (t, x, y).

Section 2 indicates how these results of the linear theories for the elevator and
for the secondary modes will be used to obtain an approximate explanation of some
of the steady statistics in the DNS of § 4. The main assumption here is that the
vertical wavelength h0 of maximum secondary growth is equal to a ‘mixing length’
for salinity �0, defined in § 2. This appears plausible in the DNS of figure 1, where
the amplifying z-wave (figure 1a) is seen to ‘break’ (figure 1b) and overturn, thereby
producing salinity plumes (figure 1d) whose average salinity anomaly is comparable
with S̄∗

z multiplied by the vertical wavelength. In § 4, the (h0, �0) relationship as well
as our theory for the heat/salt flux will be compared with the statistics obtained in
DNS.

The basic equations used in the linear/nonlinear numerics appear in § 2. A simplified
explanation of the secondary instability is given in § 3.1 and the fastest growing
wavelength in two/three dimensions is determined in § § 3.2 and 3.3. Comparison with
DNS appears is § 4. Alternative theories for the salt flux and eddy diffusivity are
briefly discussed in the Appendix. Our results are summarized in § 5.

2. Basic considerations
In all the previous studies, and in what follows, the Boussinesq equations are non-

dimensionalized using d ≡ (KT ν/gT̄ ∗
z)

1/4 as the length unit, KT /d as the velocity unit,
d2/KT as the time unit, and T̄ ∗

zd as the unit for the departures (T , S) from the basic
state (T̄ ∗(z), S̄∗(z)). The resulting non-dimensional equations are

∂T /∂t + v · ∇T + w = ∇2T , (2.1)

∂S/∂t + v · ∇ S + w/R = τ∇2S, (2.2)

∇ · v = 0, (2.3a)

Pr−1[∂v/∂t + v · ∇v] = −∇p + ∇2v + (T ′ − S ′)k̂, (2.3b)

where v = ı̂u + ̂ v + k̂w, and ı̂, ̂ and k̂, are the respective x, y, and z unit vectors;
Pr = ν/KT , and τ = KS/KT . The departure S = S ′(x, y, z, t) + S̄ (z, t) may have a
horizontally averaged component (S̄) as well as a fluctuating component S ′.

Since we want to consider both two-dimensional and three-dimensional instabilities
of the elevator mode, the latter will be given by

Ŵ , θ̂ , σ̂ = (W, θ, σ ) sin k0xeλt (in two dimensions) (2.4a)

or

= (W, θ, σ )[cos k0x + cos k0y]eλt (in three dimensions) (2.4b)

where W, θ and σ are the respective amplitudes of vertical velocity, temperature and
salinity. In either case (2.4a, b), the growth rate λ of the fastest growing wavelength
(2π/k0) (see Stern 1960) satisfies the cubic

λ3 + λ2(1 + Pr + τ )k2
0 + λ

[
(τ + Pr + τPr)k4

0 + Pr(1 − 1/R)
]

+ Prτk6
0 + Prτk2

0 − Prk2
0/R = 0, (2.5)
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and is obtained by maximizing the real root of (2.5) with respect to k0. The fastest
growing wavelength is in units of d . The modal amplitudes are related by

θ = −W/
(
λ + k2

0

)
, σ = −W/

(
R

(
λ + τk2

0

))
. (2.6)

Although the final amplitudes of (w, S ′, T ′) are not yet determined, their ratios may
be approximated using (2.6); e.g. for the important heat/salt flux ratio we have

γ ≡ 〈wT ′〉
〈wS ′〉

≈ 〈Wθ〉
〈Wσ 〉

=
R

(
λ + τk2

0

)
(
λ + k2

0

) , (2.7)

where (‘bar’, ‘angle brackets’) is the respective (horizontal, vertical) average. Equation
(2.7) has previously been used (Schmitt 1979) as an approximation to the fully
nonlinear and statistically steady value of γ . This will be verified by comparison with
DNS (§ 4).

By using the subscript zero to denote dimensional quantities, the statistically steady
salt flux is

〈w0S
′
0〉 = (KT /d)(T̄ ∗

zd)〈wS ′〉 = KT T̄ z〈wS ′〉, (2.8)

the salinity variance is

〈(S ′
0)

2〉 = (T̄ ∗
zd)2〈(S ′)2〉, (2.9)

and the eddy salt diffusivity is

DS ≡ −〈w0S
′
0〉

S̄∗
z

=
−〈w0S

′
0〉

〈(S ′
0)

2〉
〈(S ′

0)
2〉

S̄∗
z

=
−〈w0S

′
0〉

〈(S ′
0)

2〉
�2

0S̄
∗
z, (2.10)

where

�0 = 〈(S ′
0)

2〉1/2
/
S̄∗

z (2.11a)

is a defined salinity mixing length. There is also a ‘T -mixing length’ which is somewhat
different insofar as the numerator contains T ′

0 and the denominator is T ∗
z . Because

the finger plumes in figure 1 lose their heat anomaly much more rapidly than their
salt anomaly, the ‘T -mixing length’ should be smaller than �0, and therefore is not the
best measure of the maximum penetration depth of the finger blobs in the statistical
state.

Our first assumption is that the wavelength of the fastest growing secondary
instability h0 and �0 are approximately equal:

h0
∼= �0 or h ∼= �, (2.11b)

where � ≡ �0/d and h ≡ h0/d are the corresponding non-dimensional wavelengths;
note that h is the same for T ′ and S ′. We also need to evaluate

〈w0S
′
0〉

〈(S ′
0)

2〉
=

KT

d2T̄ ∗
z

〈wS ′〉
〈(S ′)2〉

. (2.12)

Equation (2.10) then becomes

DS/KT =
C(R)

R

(
�0

d

)2

, (2.13)

where R = T̄ ∗
z/S̄

∗
z > 1,

C(R) =
−〈wS ′〉
〈(S ′)2〉

≡ b
〈w2〉1/2

〈(S ′)2〉1/2
, (2.14a)
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and 0 � b � 1 is the correlation coefficient between vertical velocity and salinity. Since
S ′

0 = S ′T̄ ∗
zd , equation (2.11a) becomes:

〈S ′2〉1/2 =
�

R
∼=

h

R
. (2.14b)

In § 4 DNS for the left-hand side of this will be compared with values for the
right-hand side obtained from the secondary instability.

With (2.7) as a precedent, we also assume that the ratio of the r.m.s. vertical
velocity to the r.m.s. salinity in (2.14a) may be approximated by the linear theory (cf.
(2.4) and (2.6)) for the fastest growing elevator mode; also b ≈ 1 is assumed. Then
C(R) ∼= |W |/|σ |, or

C(R) ∼= R
(
λ + τk2

0

)
. (2.15)

When (2.11b) and (2.15) are used in (2.13) we find the approximation

DS/KT
∼=

(
λ + τk2

0

)
(h0/d)2, (2.16a)

where the maximum λ and k0 are computed from the cubic (2.5), and the value of
h0 is computed from the secondary instability (§ 3). Using (2.7) and (2.16a), the heat
finger diffusivity is:

DT

KT

≡ γDS

RKT

∼=
(
λ + τk2

0

)2

(
λ + k2

0

) h2
0

d2
. (2.16b)

The DNS in § 4 will allow a comparison of the statistical results with the above
theoretical approximations.

For the secondary stability problem, Ŵ , θ̂ and σ̂ in (2.4) give the basic state, and
double primes denote the perturbation. Thus in three dimensions, the equations
(2.1)–(2.3), linearized about the basic state (2.4), give

Pr−1

(
∂

∂t
+ Ŵ (x, y, t)

∂

∂z

)
v′′ + Pr−1k̂v′′ · ∇Ŵ = −∇p′′ + ∇2v′′ + k̂(T ′′ − S ′′), (2.17)

∇ · v′′ =
∂u′′

∂x
+

∂v′′

∂y
+

∂w′′

∂z
= 0, (2.18)

(
∂

∂t
+ Ŵ

∂

∂z

)
T ′′ + u′′ ∂θ̂

∂x
+ v′′ ∂θ̂

∂y
+ w′′ = ∇2T ′′, (2.19)

(
∂

∂t
+ Ŵ

∂

∂z

)
S ′′ + u′′ ∂σ̂

∂x
+ v′′ ∂σ̂

∂y
+

w′′

R
= τ∇2S ′′, (2.20)

and the pressure

∇2p′′ =
∂

∂z
(T ′′ − S ′′) − 2Pr−1

(
∂Ŵ

∂x

∂u′′

∂z
+

∂Ŵ

∂y

∂v′′

∂z

)
,

is computed by applying ∇ · to (2.17) and using (2.18). In two dimensions (§ 3.2) we
use (2.4a) ∂θ̂/∂y = 0 = ∂σ̂ /∂y = v′; and (2.17) is replaced by the vorticity equation

(
∂

∂t
+ Ŵ

∂

∂z
− Pr∇2

)
∇2ψ ′′ − ∂ψ ′′

∂z

∂2Ŵ

∂x2
= Pr

∂

∂x
(T ′′ − S ′′), (2.21)

with w′′ =ψ ′′
x and u′′ = −ψ ′′

z . The (two-dimensional, three-dimensional) ‘normal modes’
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are, respectively,

[T ′′, S ′′, ψ ′′] = [Tm(x, t), Sm, ψm]eimz, (2.22a)

[T ′′, S ′′, v′′] = [Tm(x, y, t), Sm, vm]eimz. (2.22b)

3. Linear theory of the secondary instability
3.1. Qualitative explanation of the super-exponential growth rate

Consider first a basic finger state with purely vertical velocities W3 (x, t) which amplify
according to

∂W3

∂t
= λW3. (3.1)

Now subject this elevator mode to an infinitesimal amplitude perturbation consisting
of a vertically varying shear flow U (z, t), and assume this deflects the elevator mode
through a small angle φ(z, t), thereby producing a fluctuating horizontal velocity
u′ � W3φ. On kinematical grounds, we assume

∂φ

∂t
� ∂U

∂z
. (3.2)

The linearized horizontally averaged momentum equation ∂U/∂t + ∂/∂zu′W3 =
Pr∂2U/∂z2 then becomes

∂

∂t
Uz +

∂2

∂z2
u′W3 = Pr

∂2

∂z2
Uz,

∂2φ

∂t2
+

∂2

∂z2

(
W 2

3 φ
)

� Pr
∂2

∂z2

∂φ

∂t
.




(3.3)

This linear equation for φ = φ̂ (t) sin mz yields the ordinary differential equation (ODE)

d2φ̂

dt2
+ m2Pr

dφ̂

dt
− m2W 2

3 φ̂ = 0. (3.4)

For Holyer’s (1984) case of a marginally growing elevator mode with constant W 2
3 ,

we obtain

φ̂ = eλ2t , 2λ2 = −Pr m2 +

√
Pr2 m4 + 4W 2

3 m2 > 0, (3.5)

implying that the shearflow disturbance (3.2) increases exponentially with time; the
fingers thereby provide a negative viscosity. When m → 0, this simple theory agrees
with Holyer’s (1984) equation (4.36), obtained from a truncation of the Floquet
calculation for the secondary instability. Holyer’s calculation predicts a fastest growing

wavenumber

√
2W 2

3 /(3Pr2) increasing with the amplitude of the basic-state fingers,

a result also obtained by Shen (1995). Unfortunately, these results, as well as (3.5),

require a priori knowledge of W 2
3 .

For the more realistic case of a time-dependent elevator mode (3.1), we let

W 2
3 = Ω(t), dΩ/dt = +2λΩ, (3.6)

where λ satisfies (2.5). Equation (3.4) may then be rewritten as

4λ2Ω
d

dΩ
Ω

dφ̂

dΩ
− m2Ωφ̂ + 2λm2PrΩ

dφ̂

dΩ
= 0, Ω(0) > 0. (3.7)
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The important qualitative property of this ODE is the asymptotic behaviour as t or
Ω → ∞. Using the WKB method with

φ̂ = eG(Ω), G′′  (G′)2, (3.8)

we obtain

4λ2Ω2(G′)2 − m2Ω + O(ΩG′) + O(G′′) = 0.

Therefore,

G′ � m

2λ
Ω−1/2 + . . . ,

G � m

λ
Ω1/2.


 (3.9)

For fingers with initial W 2
3 (t = 0) = 1 or Ω(t) = e2λt we finally obtain:

φ � sin mz exp

{
m

λ
eλt

}
. (3.10)

This means that U (t, z) has a ‘super exponential’ growth rate, so that its amplitude
may be expected to rapidly ‘overtake’ the exponentially growing elevator mode,
thereby leading to its buckling or breaking. This approximate theory is invalid for
large m and does not resolve the fastest growing U ; we now turn to this problem.

3.2. The fastest growing vertical wavelength in two dimensions

We eventually want to study the normal mode (∼ exp imz) instability of the basic
finger state (2.4a), by solving (2.21) together with the two-dimensional heat–salt
equations. It is instructive, however, to first obtain a numerical solution in t, x, and
z space, since this will reveal the numerical difficulties in the normal mode problem.
Accordingly, we use the linearized perturbation equations ((2.21), etc.) and make a
spectral calculation for the same parameters as used in figure 1. The computational
box was 2 × 10 FGW (64 × 256 grid), the initial finger velocity was W = 2.0, and the
perturbation (real-valued) was initialized with random noise with amplitude 0.02 for
T ′′(x, z, t), S ′′(x, z, t) and ψ ′′(x, z, t) = 0. As contrasted with the subsequent normal
mode calculation, this spectral solution only resolves wavelengths which are integer
fractions of the chosen domain size (i.e. 10, 10/2, 10/3, 10/4, 10/5, etc. FGW),
and which can only crudely resolve the vertical wavelength of the fastest growing
perturbation.

The perturbation salinity S ′′(x, z, t) at three different times (figure 2) shows that
after the initial transient period (t < 5, not shown) the small-amplitude disturbance
grows extremely fast (increasing by 10 orders of magnitude over 4 time units);
in comparison, the elevator mode becomes only e-times larger over 4 time units.
The large perturbation growth rate represents only one aspect of the difficulties in
computing the fastest growing normal mode instability. The disturbance shown on
figure 2(a, b), is dominated by vertical wavelength = 10/4 =2.5 FGW (4 dominant
peaks in the vertical) in the beginning (t = 5.8, t = 8.8). At later times (t = 12.8),
however, there are 5 dominant peaks, suggesting a transition to a shorter fastest
growing wavelength = 10/5 = 2 FGW. This illustrates the difficulty in determining
an unambiguous fastest growing vertical wavelength. For rough comparison, we note
that the nonlinear calculation in figure 1(a, b) has four waves in the vertical.

In order to avoid the ambiguity associated with the choice of t , we define the
fastest growing disturbance as the dominant one which evolves as t → ∞. In that
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Figure 2. The salinity perturbation at 3 different times in the linearized two-dimensional
spectral calculation for R = 2 and 2 × 10 FGW domain. Note that the number of dominant
peaks changes from 4 to 5 for 8.8 < t < 12.8. The contour interval is (a) 0.01, (b) 5.0 and
(c) 5 × 1010.

which follows, we seek such an asymptotic length scale h ≡ h0/d by considering the
individual evolution of normal modes (2.22a) with a specified vertical wavenumber
m. It is further assumed that Tm(x, t), Sm(x, t) and ψm(x, t) are horizontally periodic
in an interval equal to 2 FGW, which is the same as in the spectral calculations;
this domain size therefore includes the subharmonic of the elevator mode as well
as the wavenumber zero. Substituting the normal modes (2.22a) in equations (2.21),
etc., Fourier transforming in the horizontal and evaluating explicitly the transforms
of the product terms (containing the basic elevator state) yields an ODE system
(with time-dependent coefficients) of coupled equations for the Fourier components
[T̂ km(t), Ŝkm(t), ψ̂km(t)]. The system, truncated at a maximum horizontal wavenumber
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k = 32 × 2π/(2FGW), has the same horizontal resolution as the aforementioned
spectral calculations (64 nodes per 2 FGW) and is integrated in time using a fourth-
order Runge–Kutta scheme with a time step of �t = 0.001.

Our first calculation for R =2 (Pr = 7, τ = 1/24) was initialized with vertical
velocity W = 2, and a perturbation consisting of random noise with amplitude
10−10 for Tm(x, t), Sm(x, t), and zero for the streamfunction ψm(x, t). The foregoing
spectral calculations suggest that we may restrict our search for the fastest growing
perturbation to the following 13 z-wavelengths:

2π/m = [1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 3.0, 4.0]FGW,

where the finger wavelength is FGW= 2π/k0 = 7.88 for R = 2, R =7, τ = 1/24. The
ODE system is solved simultaneously for all of the above modes. The growth of the
different modes is compared by plotting the ratio(

Tm(x, t)T ∗
m(x, t)

Tm(x, t − δt)T ∗
m(x, t − δt)

)1/2

, δt = 0.2,

as a function of time. Figure 3(a) shows that there is no preferred wavelength at small
times, but such a length scale might exist at later times. Equation (3.10) suggests a
super-exponential growth rate, and to obtain the asymptotic fastest growing vertical
wavelength we compute

Gm(t) = ln ln

(
Tm(x, t)T ∗

m(x, t)

Tm(x, t − δt)T ∗
m(x, t − δt)

)1/2

, δt = 0.2.

This would be a linear function of time (t) if Tm(x, t) ∼ exp(exp(at)), as is the
case in figure 3(b) where Gm(t) is plotted (for t > 4) for the above 13 modes. The
inset on figure 3(b), showing the values Gm(t = 15) at the end of the calculation,
indicates that the asymptotic fastest growing vertical wavelength is h =(1.7–1.8)
FGW =(1.75)(7.9) = 14. This agrees with the dominant wavelength of 2 FGW in the
linearized spectral calculation (figure 2c), but is somewhat smaller than the dominant
wavelength of 2.5 FGW in the nonlinear calculation (figure 1b). The consistency
of the normal mode calculation is verified by the fact that the same h is obtained
regardless of whether Gm is computed for temperature, salinity or horizontal velocity.
The numerical accuracy of the calculation is determined from the mechanical energy
equation, in which the residual term, i.e. the error in the kinetic energy power integral,

remains less than 1 % of the production (and largest) term 〈Ŵψ ′′ψ ′′
xxz〉 for t < 11; the

error grows to 5 % at the end of the calculation owing to the extremely large growth
rates.

To further illustrate our solution we plot the spectrum (figure 3c, d) of the horizontal
velocity component ûkm (normalized by its r.m.s. value) as a function of k for the
fastest growing h = 1.8 FGW. At time t = 5, most of the perturbation energy is
contained in the finger FGW, its subharmonic, and the k = 0 mode. The subharmonic
mode, however, disappears later and the solution at t = 15 (figure 3d) is dominated
by horizontal wavenumbers k = 0 and k = 2π/(1 FGW). Thus, the dominant energy
transfer involves the elevator wavenumbers (k0, 0), and the waves (0, m) and (k0, m).
This corresponds to those in the Holyer (1984) calculation in which the elevator
mode amplifies a horizontal shear flow (k = 0). Holyer only considered a marginally
growing elevator mode at very large R =1/(2τ ) = 50, and our calculation extends
the theory to small R = 2 and the fastest growing fingers. When this calculation was
repeated for two other initial finger velocities (W = 0.2 and W = 0.002) it gave the



370 M. E. Stern and J. Simeonov

2.5 (a)

(b)

2.0

1.5

1.0

0 2 4 6 8 10

2

1

0

–1

–2

–3

–4
4 6 8 10

Time
12 14 16

1.3

1.2

1.1

1.0
1.5 2.0

Vertical wavelength (FGW)

2.5 3.0

T
m

(x
, t

)T
* m

(x
, t

)

T
m

(x
, t

 –
 δ

t)
T

* m
(x

, t
 –

 δ
t)

T
m

(x
, t

)T
* m

(x
, t

)

T
m

(x
, t

 –
 δ

t)
T

* m
(x

, t
 –

 δ
t)

G
m

 (
t)

 =
 I

n 
In

Figure 3(a, b). For caption see facing page.

same fastest growing wavelength of h = 1.8 FGW; this verifies that the vertical length
scale is independent of the initial W for sufficiently small values of the latter. Similar
calculations of h for different density ratios were made and the results are given in
table 1. It is seen that h0/d increases as the density ratio approaches R =1, but it is
remarkable that the ratio of h to the finger FGW (also a function of R) seems to
remain constant. Also given in the table is the value of C (R), computed from (2.15)
and (2.5), and this decreases as R increases.

3.3. Three-dimensional fingers

We now want to see if the fastest growing instability of three-dimensional fingers has
a vertical wavelength that differs from the value in the previous section. The basic
finger state will be restricted to an elevator mode (2.4b) with a square horizontal
planform, and the perturbations (2.22b) are assumed to be periodic in x, y with a
period 2 FGW (this includes the finger subharmonic). The resulting linear ODE
system for the Fourier coefficients [ûklm(t), v̂klm(t), ŵklm(t), p̂klm(t), T̂klm(t), Ŝklm(t)] is
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Figure 3. (a) Growth rates as a function of time for the 13 modes in the first linear stability
calculation for R = 2.0. The growth rates are measured by the increase of the amplitude over a
fixed time interval δt =0.2. (b) Same as (a) except that the super-exponential trend is removed
by plotting double ln of the temperature amplitudes; shown are later times than those in
(a). The linear trend indicates that the calculation reached an asymptotic solution. The inset
shows Gm(t = 15) as a function of the vertical wavelength. (c, d) Bar charts of the normalized
horizontal velocity spectrum for the fastest growing wavelength 1.8 FGW in (b). The horizontal
wavenumber corresponding to 1 FGW is also indicated. Note that the base of the vertical
bars does not extend to the zero ordinate (−∞ on the logarithmic scale), but is cut off at some
arbitrary level. Half of the harmonics in (c) disappear in (d) because their amplitude is smaller
than the cutoff level.

truncated at horizontal wavenumbers k = l = 32 × 2π/(2 FGW). The fastest growing
wavelength is then determined by time integration of the ODE system for each of the
following vertical wavelengths:

2π/m = [1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0]FGW,

where FGW as a function of the density ratio is given in table 1 and repeated in
table 2.

The first three-dimensional linear calculation was for R =1.5, Pr = 7, τ = 1/24
with an initial amplitude of the fingers, (2.4b), corresponding to W = 2. As previously,
the initial perturbation velocities are zero, whereas Tm(x, y, t) and Sm(x, y, t) are
initialized using small-amplitude (10−10) random noise; the time step for the numerical
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R 1.0 1.25 1.5 2.0 2.5 3.0

FGW 12.4 9.31 8.47 7.88 7.68 7.60
h0/d 21.1 15.8 14.4 14.1 13.8 13.7
h0/(FGW×d) 1.7 1.7 1.7 1.8 1.8 1.8
λ(R) 0.705 0.485 0.372 0.251 0.187 0.146
γ (R) 0.744 0.670 0.643 0.627 0.626 0.631
C(R) 0.716 0.630 0.593 0.556 0.536 0.524
�0/d − 29.2 ± 1.4 23.9 ± 1.3 22.1 ± 1.3 20.8 ± 1.3 19.7 ± 0.8
γDNS − 0.68 ± 0.05 0.66 ± 0.05 0.63 ± 0.05 0.61 ± 0.03 0.61 ± 0.02
CDNS − 0.23 ± 0.03 0.24 ± 0.03 0.24 ± 0.03 0.24 ± 0.03 0.24 ± 0.03

Table 1. The non-dimensional vertical wavelength h0/d of the asymptotic fastest growing
secondary instability (two-dimensional) and the wavelength of the fastest growing elevator
mode for different density ratios, Pr = 7, τ = 1/24. The growth rate λ in (2.5), the theoretical
flux ratio γ (2.7) and the coefficient C in (2.15), computed for the fastest growing wavenumber
k0 = 2π/FGW. Also given at the bottom of the table are the non-dimensional ‘mixing’ length

�0/d , γDNS = 〈wT ′〉/〈wS ′〉 and CDNS = −〈wS ′〉/〈(S ′)2〉 as obtained from the DNS of Stern et al.

2001. For typical thermocline T ∗
z , KT =1.5 × 10−3 cm2 s−1, ν =10−2 cm2 s−1, the finger length

scale d is about 1 cm.

R 1.0 1.25 1.5 2.0 2.5 3.0

FGW 12.4 9.31 8.47 7.88 7.68 7.60
h0/d 28.5 21.4 19.5 18.1 17.7 17.5
h0/(FGW × d) 2.3 2.3 2.3 2.3 2.3 2.3
C(R) 0.716 0.630 0.593 0.556 0.536 0.524

Table 2. The vertical wavelength h0 of the fastest growing three-dimensional secondary
instability for different density ratios, Pr = 7, τ = 1/24. (The theoretical value of C(R) is
the same as in the two-dimensional case).

integration was �t = 0.0005. The plot of Gm(t) in the three-dimensional run for R = 1.5
(figure 4) suggests that asymptotic solutions with super-exponential growth have been
reached by t =9. The inset of figure 4 indicates that the asymptotic fastest growing
wavelength is h = 2.3 FGW= 18.1, which is about 30 % larger than the corresponding
two-dimensional wavelength. Although either wavenumbers kx = 0 or ky = 0 appear
transiently in this calculation, a mean shear flow [(ky, kx) = (0, 0)] is not generated,
as is the case in two-dimensions. Similar three-dimensional calculations for various
density ratios (table 2) show that, as in the two-dimensional case, h decreases when
R increases and the ratio of h to the finger FGW is also a constant, however, equal
to 2.3.

4. Comparison with DNS
4.1. Two-dimensional DNS

A DNS for R = 2, Pr =7, and τ = 1/24 was made in a 2 × 10 FGW domain, similar
to figure 1 and the linear spectral calculation in § 3.2. The main difference from
figure 1 is that the initial T/S perturbation to the elevator mode is random only
in the horizontal and has a vertical wavelength = 2FGW= 15.8. This wavelength is
approximately equal to the wavelength of the fastest growing secondary instability.
The initial vertical velocity of the elevator mode was W = 2 and the perturbation
salinity and temperature amplitudes were 0.02 and 0.01, respectively.
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Figure 4. Growth rates as a function of time for 12 modes used in the three-dimensional
linear stability calculation forR = 1.5. Plotted is a double ln of the increase of temperature
amplitude over the fixed time interval δt = 0.2. Also shown in the inset is Gm(t = 10.8) as a
function of the vertical wavelength.

The evolution of the total salinity variance (figure 5a) illustrates that the
growth of the elevator mode is interrupted at t = 10 and that the subsequent
statistically steady fingers have 〈(S ′)2〉1/2 = 11.1; the corresponding salt flux is

〈wS ′〉 = –29.7 ± 4.5. This 〈(S ′)2〉1/2 is about 1.6 times the predicted theoretical r.m.s.
salinity = (h/R) = (14.4/2) = 7.2. As will be illustrated by the solution spectra, this
discrepancy is due to the presence of wavelengths longer than h in the final chaotic
fingers. For example, the subharmonic of h arises because of the merger of adjacent
finger blobs into larger plumes, as revealed by a movie of the finger evolution beyond
the time of figure 1(c).

In considering the solution spectra, we first concentrate on the initial wave-breaking
stage to show the relevance of the length scale h in the finite-amplitude phase. A
plot of the salinity variance spectra at various times (figure 5b–d) illustrates that,
for t � 14.5, the maximum amplitude is maintained at a wavenumber approximately
equal to 2π/h and there are also discrete harmonics of finite amplitude. Subsequently,
in the wave-breaking stage of figure 1, other Fourier harmonics develop with finite
amplitude, but wavelength 2π/h still dominates the solution (figure 5e).

The average (from t =10 to t =100) spectrum of the statistically steady state
(figure 5f ) shows that vertical wavelengths longer than h also develop and that the
fundamental wavelength (10 FGW) has the largest amplitude. To further examine the
long waves, the calculation was continued for another 100 time units (figure 6)
by periodically extending the final data in a 4 × 40 FGW domain and adding
to it small-amplitude (0.02) noise. This extended run had an average salt flux
〈wS ′〉 = −29.9 ± 1.7 and r.m.s. salinity 〈(S ′)2〉1/2 = 11.2 which agree closely with those
in the small domain run (figure 5). The time average vertical spectrum of the
temporally extended calculation (not plotted) shows that the spectrum becomes flat
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at wavelengths longer than 10 FGW, with amplitude 3–4 times smaller than the
amplitude of the fundamental wavelength in the 2 × 10 FGW calculation.

A better illustration of the spectral distribution of the salinity/temperature variance
in the extended calculation is provided by a variance-preserving plot (figure 6). Most
of the S ′ energy is in waves longer than h which explains why the statistically
steady 〈(S ′)2〉1/2 is greater than the prediction (2.14b) based on h. The plot shows a
salinity peak at wavelength 1.5 FGW, approximately equal to h, and a temperature
peak at twice that wavelength. The following tentative explanation is offered for
the difference in the salinity and temperature spectra. The ratio of the salinity and
temperature variance in the linear secondary instability calculation of figure 2 was
about 2.7 and is almost the same as the ratio 44/16 = 2.75 of the salinity and
temperature spectral amplitudes at wavelength h (figure 6). At wavelengths longer
than h, the difference between the salinity and temperature spectral amplitudes is
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Figure 5. A 2 × 10 FGW calculation for R = 2, Pr = 7, τ = 1/24 similar to the one on figure 1,
except that the initial perturbation contains the vertical wavelength of the fastest growing
secondary instability (see text). (a) Total salinity variance as a function of time; after an initial

overshoot the r.m.s. salinity levels off at 〈(S ′)2〉1/2 = 11.1. (b–f ) Natural log of the vertical

salinity spectrum, ln(
∑

k ŜkmŜ∗
km), as a function of the vertical wavenumber normalized by the

z-fundamental wavenumber mf at various times (b) t = 0.5, (c) 7.0, (d) 14.5, (e) 17.5, and (f )

the time-averaged (10 < t < 100) spectrum
∑

k ŜkmŜ∗
km. The dashed line denotes the wavelength

of the fastest growing secondary instability.

decreased owing to vertical advection of the mean T̄ ∗
z and S̄∗

z by large-scale motions.
Since R = T̄ ∗

z/S̄
∗
z > 1, the temperature spectrum will most probably cross above the

salinity spectrum at wavenumbers lower than those plotted on figure 6.
Similar calculations for other R (table 1) show that γDNS decreases slightly with R

and is in good agreement with the theoretical γ . The DNS values of (�o/d) (table 1)
exceed the theoretical (h0/d) by less than a factor of two, as in the DNS in figure 5.
Since the ratio of salt flux to the salinity variance (CDNS) is smaller than the theoretical
value C by a factor of two (table 1) we see that there is a compensation of the errors
in the terms of (2.13) which determines DS . This explains why the theoretical values
plotted in figure 7 are in such good agreement with the DNS at various density ratios.
Because the predicted γ (table 1) and DS (figure 7) compare well with the DNS, the
predicted heat diffusivity DT (2.16b) will also be in good agreement with the DNS.
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k ŜkmŜ∗
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4.2. Three-dimensional fingers

The three-dimensional linear theory results in table 2 show that, as in the two-
dimensional case, the wavelength of the fastest growing instability is proportional to
the finger FGW and decreases with increasing R. Since C(R) and FGW are the same
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in two and three dimensions, our theory predicts the same power dependence
DS(R) ∼ R−1.9 (figure 7) for both cases. Using h =18.1 for R =2 (table 2), our three-
dimensional theory predicts r.m.s. salinity amplitude (2.14a) 〈(S ′)2〉1/2 = 18.1/2 ≈ 9.1
which is 30 % larger than the corresponding two-dimensional value. The theory (2.16)
also predicts a three-dimensional salt eddy diffusivityDS/KT = 91 which is 1.7 times
larger than the corresponding two-dimensional diffusivity.

These theoretical estimates for the r.m.s. salinity and the salt flux will now be
compared with a three-dimensional DNS for R =2 in a 2 × 2 × 20 FGW domain.
The numerical grid had 64 nodes in x, y and 512 nodes in z, resulting in grid step
�x = �y = 0.25 and �z = 0.31; a time step �t = 0.005 was used for time integration.
The calculation was initialized using the fastest growing vertical fingers in (2.4b) with
W = 2 and with small-amplitude (0.02) random noise for the horizontal velocities.
Initially, the finger flux increases exponentially reaching the large value –2188, but
at t = 11 (figure 8b) the flux starts to equilibrate. Unlike the corresponding two-
dimensional calculation (figure 1) the instability of the vertically elongated fingers in
figure 8(a) does not produce an initial mean horizontal shear flow, but each finger
merges with a nearby finger with the same properties at periodic vertical intervals
approximately equal to 3.3 FGW.
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Figure 8. (a) Volumetric plot of the S ′(x, y, z) = 25 salinity isosurface in the three-dimensional
spectral calculation for R = 2, Pr= 7, τ = 1/24 in 2 × 2 × 20 FGW domain; shown is only the
lower half of the domain 0 <z < 10 FGW = 78. The first two panels (for t = 11.4 and t = 11.6)
illustrate the finger instability and the third panel illustrates the subsequent chaotic convection.
Grey shading denotes the S ′ = 25 isosurface and black corresponds to the isosurface interior
S ′ > 25 which is visible at cross-sections of the isosurface S ′ = 25 with the walls. Note the
developing large-scale structure at t = 20. (b) Average salt flux as a function of time in the
three-dimensional spectral calculation for R = 2. The large peak 〈wS ′〉 = −2188 at t =11 is not
shown.

The r.m.s. salinity 〈(S ′)2〉1/2 = 14 in the above three-dimensional DNS is about
14/9.1 = 1.5 times larger than the predicted value. As in the two-dimensional case,
the difference between �0 and the prediction h0 (table 2) is again explained by
the generation of longer scales (figure 8a) owing to merging of finger blobs. The
statistically steady value C(R) = 0.32 ± 0.01 is about half the corresponding theoretical
estimate (table 2, R = 2). As before the compensation of the errors in C and �0 in
(2.13) brings about better agreement of the theoretical estimate of DS with the DNS.
The equilibrium salt flux 〈wS ′〉 = −63 of the statistically steady fingers (figure 8b)
implies a salt eddy diffusivity DS/KT = 124. Thus, our theory (§ 2) only underestimates
the three-dimensional fluxes by about 30 %. It should be noted, however, that the
numerical eddy diffusivity will be slightly reduced if the horizontal domain size
of the DNS is increased. For example, Stern et al. (2001) have shown that in a
three-dimensional DNS for R = 2, Pr= 7, τ = 1/6 the heat flux decreases 15 % when
the horizontal domain size is doubled from two to four finger pairs. This can be
explained by noting that in a wider domain the fingers generate larger-scale motions
(on scales of several FGW), which dominate the solution and which are less efficient
in transporting heat/salt in the vertical.

5. Conclusion
The exponential growth of the elevator mode is terminated by a secondary

instability of super-exponential growth rate. The fastest growing vertical wavelength
hd multiplied by S̄∗

z determines a characteristic amplitude S ′. This is related to a
(dimensional) ‘mixing’ length:

R〈(S ′)2〉1/2d ≡ �d.

DNS calculations of � show that it exceeds h by a factor between 1.4 and 1.8. The
discrepancy is attributed to the subharmonic of h, which is associated with the merger
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of fingers to form plumes. To predict the salt flux we also need to consider the factor
C (equation (2.14a)) which is the product of r.m.s.(w)/r.m.s.(S ′) and the correlation
coefficient between w and S ′. It is assumed that the elevator mode can be used to
evaluate C in the statistically steady state. DNS calculations show that the result is
again in error by a factor ∼ 2, but fortunately the errors in C and � compensate in
determining the salt flux, which agrees with the DNS (figure 7). A useful formula
(equation (2.16)) for the eddy heat/salt diffusivities is thereby obtained.

When the secondary stability problem was solved in three dimensions we obtained
(table 2) an h, which is 30 % larger than in two-dimensions. For R =2, our theory
(2.16) predicts a salt flux which is 1.7 times larger than the corresponding two-
dimensional value. Similarly, the equilibrium three-dimensional DNS flux (figure 8b)
is 2.1 times larger than the two-dimensional flux for the calculation in figure 5. Stern
et al. (2001) also found three-dimensional finger fluxes that are about 2–2.5 times
larger than the corresponding two-dimensional fluxes in DNS for R =2 and τ = 1/6,
τ = 1/12. Thus, our mixing-length theory is able to explain the increase of the finger
fluxes in three-dimensional DNS.

The mechanism for limiting the growth of fingers in the heat–salt case considered
here is similar to that found by Stern & Simeonov (2004) for the sugar–salt case
(much larger τ and Pr). Using a mode truncation of the nonlinear T/S equations
(with negligible inertial terms), these authors show that the instability of the elevator
mode has a super-exponential growth. The subsequent nonlinear energy exchange
between the triads also results in a statistical equilibrium of the elevator mode.
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(grants OCE-0092504 and OCE-0236304). We have greatly benefited from the referee’s
critical comments.

Appendix
Previous phenomenological theories of equilibrium salt-fingering convection have

been considered by Shen (1995), and Merryfield & Grinder (W. J. Merryfield & M.
Grinder, Salt fingering fluxes from numerical simulations, unpublished manuscript,
2002, herein referred to as MG). Assuming round finger blobs with a characteristic
length scale k−1, vertical velocity W , and temperature and salinity anomalies θ , and σ ,
in both papers, the authors arrive at essentially the same nonlinear (non-dimensional)
system:

f k|W |W = Pr (θ − σ ) − Prk2W, (A 1)

f k|W |θ = − W − k2θ, (A 2)

f k|W |σ = − W/R − τk2σ, (A 3)

wheref is an adjustable constant. MG suggest that the nonlinear terms correspond to
enhanced dissipation of heat, salt and momentum, associated with the circulation and
straining in a rising/descending blob. MG further point out that the above system
((A1)–(A3)) implies a cubic equation for the quantity f k|W | ≡ λMG, which is identical
to the cubic (2.5) for the growth rate of linear fingers. It is further assumed that
the most energetic fingers are realized, i.e. λMG is maximized with respect to k. This
determines kf |W |and solving for σ (A3) gives the following salt eddy diffusivity

DS

KT

= f −2 γ − Rτ

R − γ
.
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In order to close the above theories various ad hoc assumptions have been made,
most notably the use of the same length scale for the flux convergence of heat,
salt and momentum. The only parameter related to the final equilibrium state is the
undetermined constant f , which is calibrated using the DNS. Compared to this, our
theory goes a step further by using the secondary instability of the fingers to predict
the mixing length and the corresponding salinity amplitude.

Mention should also be made of Kunze’s (1987) work. He proposed that a secondary
instability might limit the finger fluxes when the Froude number, based on the
horizontally sheared finger velocity, becomes larger than 1.0. Using this criterion,
however, he obtained flux formulae in which the fluxes decrease as R approaches 1.0,
and which is opposite to the flux dependence inferred from DNS and suggested by
observations (St Laurent & Schmitt 1999).
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